Rapamycin attenuates hypoxia-induced pulmonary vascular remodeling and right ventricular hypertrophy in mice
نویسندگان
چکیده
BACKGROUND Chronic hypoxia induces pulmonary arterial hypertension (PAH). Smooth muscle cell (SMC) proliferation and hypertrophy are important contributors to the remodeling that occurs in chronic hypoxic pulmonary vasculature. We hypothesized that rapamycin (RAPA), a potent cell cycle inhibitor, prevents pulmonary hypertension in chronic hypoxic mice. METHODS Mice were held either at normoxia (N; 21% O2) or at hypobaric hypoxia (H; 0.5 atm; ~10% O2). RAPA-treated animals (3 mg/kg*d, i.p.) were compared to animals injected with vehicle alone. Proliferative activity within the pulmonary arteries was quantified by staining for Ki67 (positive nuclei/vessel) and media area was quantified by computer-aided planimetry after immune-labeling for alpha-smooth muscle actin (pixel/vessel). The ratio of right ventricle to left ventricle plus septum (RV/[LV+S]) was used to determine right ventricular hypertrophy. RESULTS Proliferative activity increased by 34% at day 4 in mice held under H (median: 0.38) compared to N (median: 0.28, p = 0.028) which was completely blocked by RAPA (median HO+RAPA: 0.23, p = 0.003). H-induced proliferation had leveled off within 3 weeks. At this time point media area had, however, increased by 53% from 91 (N) to 139 (H, p < 0.001) which was prevented by RAPA (H+RAPA: 102; p < 0.001). RV/[LV+S] ratio which had risen from 0.17 (N) to 0.26 (H, p < 0.001) was attenuated in the H+RAPA group (0.22, p = 0.041). For a therapeutic approach animals were exposed to H for 21 days followed by 21 days in H +/- RAPA. Forty two days of H resulted in a media area of 129 (N: 83) which was significantly attenuated in RAPA-treated mice (H+RAPA: 92). RV/[LV+S] ratios supported prevention of PH (N 0.13; H 0.27; H+RAPA 0.17). RAPA treatment of N mice did not influence any parameter examined. CONCLUSION Therapy with rapamycin may represent a new strategy for the treatment of pulmonary hypertension.
منابع مشابه
Effect of thoracic epidural blockade on hypoxia-induced pulmonary arterial hypertension in rats
Objective(s): The present study was aimed to investigate the influence of thoracic epidural blockade on hypoxia-induced pulmonary hypertension in rats. Materials and Methods: Forty eight Wistar rats were randomly divided into 4 equal groups, named normoxia hypoxia hypoxia/ ropivacaine and hypoxia/saline. Animals were placed in a hypoxia chamber and instrumented with epidural catheters at the t...
متن کاملInhibition of the SDF-1/CXCR4 axis attenuates neonatal hypoxia-induced pulmonary hypertension.
Exposure of the neonatal lung to chronic hypoxia produces significant pulmonary vascular remodeling, right ventricular hypertrophy, and decreased lung alveolarization. Given recent data suggesting that stem cells could contribute to pulmonary vascular remodeling and right ventricular hypertrophy, we tested the hypothesis that blockade of SDF-1 (stromal cell-derived factor 1), a key stem cell mo...
متن کاملIntegrative Physiology Inhibition of the SDF-1/CXCR4 Axis Attenuates Neonatal Hypoxia-Induced Pulmonary Hypertension
Exposure of the neonatal lung to chronic hypoxia produces significant pulmonary vascular remodeling, right ventricular hypertrophy, and decreased lung alveolarization. Given recent data suggesting that stem cells could contribute to pulmonary vascular remodeling and right ventricular hypertrophy, we tested the hypothesis that blockade of SDF-1 (stromal cell– derived factor 1), a key stem cell m...
متن کاملOverexpression of the 5-hydroxytryptamine transporter gene: effect on pulmonary hemodynamics and hypoxia-induced pulmonary hypertension.
BACKGROUND Increased serotonin (5-hydroxytryptamine, 5-HT) transporter activity has been observed in human familial pulmonary hypertension. METHODS AND RESULTS We investigated pulmonary hemodynamics and the development of hypoxia-induced pulmonary hypertension and pulmonary vascular remodeling in mice overexpressing the gene for the 5-HT transporter (5-HTT+ mice). Right ventricular pressure w...
متن کاملNFATc3 is required for chronic hypoxia-induced pulmonary hypertension in adult and neonatal mice.
Pulmonary hypertension occurs with prolonged exposure to chronic hypoxia in both adults and neonates. The Ca(2+)-dependent transcription factor, nuclear factor of activated T cells isoform c3 (NFATc3), has been implicated in chronic hypoxia-induced pulmonary arterial remodeling in adult mice. Therefore, we hypothesized that NFATc3 is required for chronic hypoxia-induced pulmonary hypertension i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Respiratory Research
دوره 8 شماره
صفحات -
تاریخ انتشار 2007